
IoT Goes Nuclear:
Creating a ZigBee Chain Reaction

Eyal Ronen(B)∗, Colin O’Flynn†, Adi Shamir∗ and Achi-Or Weingarten∗
PRELIMINARY DRAFT, VERSION 0.93

∗Weizmann Institute of Science, Rehovot, Israel
{eyal.ronen,adi.shamir}@weizmann.ac.il
†Dalhousie University, Halifax, Canada

coflynn@dal.ca

Abstract—Within the next few years, billions of IoT devices will
densely populate our cities. In this paper we describe a new
type of threat in which adjacent IoT devices will infect each
other with a worm that will spread explosively over large areas
in a kind of nuclear chain reaction, provided that the density
of compatible IoT devices exceeds a certain critical mass. In
particular, we developed and verified such an infection using
the popular Philips Hue smart lamps as a platform. The worm
spreads by jumping directly from one lamp to its neighbors,
using only their built-in ZigBee wireless connectivity and their
physical proximity. The attack can start by plugging in a single
infected bulb anywhere in the city, and then catastrophically
spread everywhere within minutes. It enables the attacker to
turn all the city lights on or off, permanently brick them,
or exploit them in a massive DDOS attack. To demonstrate
the risks involved, we use results from percolation theory to
estimate the critical mass of installed devices for a typical city
such as Paris whose area is about 105 square kilometers: The
chain reaction will fizzle if there are fewer than about 15,000
randomly located smart lights in the whole city, but will spread
everywhere when the number exceeds this critical mass (which
had almost certainly been surpassed already).

To make such an attack possible, we had to find a way
to remotely yank already installed lamps from their current
networks, and to perform over-the-air firmware updates. We
overcame the first problem by discovering and exploiting a
major bug in the implementation of the Touchlink part of
the ZigBee Light Link protocol, which is supposed to stop
such attempts with a proximity test. To solve the second
problem, we developed a new version of a side channel attack to
extract the global AES-CCM key (for each device type) that
Philips uses to encrypt and authenticate new firmware. We
used only readily available equipment costing a few hundred
dollars, and managed to find this key without seeing any actual
updates. This demonstrates once again how difficult it is to get
security right even for a large company that uses standard
cryptographic techniques to protect a major product.

1. Introduction

The Internet of Things (IoT) is currently going through
exponential growth, and some experts estimate that within
the next five years more than fifty billion “things” will be
connected to the internet. Most of them will be cheaply
made sensors and actuators which are likely to be very inse-
cure. The potential dangers of the proliferation of vulnerable
IoT devices had just been demonstrated by the massive
distributed denial of service (DDoS) attack on the Dyn DNS
company, which exploited well known attack vectors such
as default passwords and the outdated TELNET service to
take control of millions of web cameras made by a single
Chinese manufacturer [1].

In this paper we describe a much more worrying situa-
tion: We show that without giving it much thought, we are
going to populate our homes, offices, and neighborhoods
with a dense network of billions of tiny transmitters and
receivers that have ad-hoc networking capabilities. These
IoT devices can directly talk to each other, creating a
new unintended communication medium that completely
bypasses the traditional forms of communication such as
telephony and the internet. What we demonstrate in this
paper is that even IoT devices made by big companies
with deep knowledge of security, which are protected by
industry-standard cryptographic techniques, can be misused
by hackers to create a new kind of attack: By using this new
communication medium to spread infectious malware from
one IoT device to all its physically adjacent neighbors in
a process resembling a nuclear chain reaction, hackers can
rapidly cause city-wide disruptions which are very difficult
to stop and to investigate.

We focus in this paper on the popular Philips Hue smart
lights which had been sold (especially in the European
market) in large numbers since 2012. The communication
between the lamps and their controllers is carried out by the
Zigbee protocol, which is the radio link of choice between
many IoT devices due to its simplicity, wide availability, low
cost, low power consumption, robustness, and long range (its
main disadvantage compared to WiFi radio communication
is its limited bandwidth, which is not a real problem in most
IoT applications). The Hue lamps contain a ZigBee chip

made by Atmel, which uses multiple layers of cryptographic
and non-cryptographic protection to prevent hackers from
misusing the lamps once they are securely connected with
their controllers. In particular, they will ignore any request
to reset or to change their affiliation unless it is sent from
a ZigBee transmitter which is only a few centimeters away
from the lamp. Even though the attacker can try to spoof
such a proximity test by using very high power transmitters,
the fact that the received power decreases quadratically with
the distance makes such brute force attacks very hard (even
at ranges of a hundred meters). This requires high power
dedicated equipment and cannot be done with the standard
ZigBee off the shelf equipment.

Our initial discovery was that the Atmel stack has a
major bug in its proximity test, which enables any standard
ZigBee transmitter (which can be bought for a few dol-
lars in the form of an tiny evaluation board) to initiate a
factory reset procedure which will dissociate lamps from
their current controllers, up to a range of 400 meters.
Once this is achieved, the transmitter can issue additional
instructions which will take full control of all those lamps.
We demonstrated this with a real war-driving experiment
in which we drove around our university campus and took
full control of all the Hue smart lights installed in buildings
along the car’s path. Due to the small size, low weight, and
minimal power consumption of the required equipment, and
the fact that the attack can be automated, we managed to
tie a fully autonomous attack kit below a standard drone,
and performed war-flying in which we flew hundreds of
meters away from office buildings, forcing all the Hue lights
installed in them to disconnect from their current controllers
and to blink SOS in morse code.

By flying such a drone in a zig-zag pattern high over a
city, an attacker can disable all the Philips Hue smart lights
in city centers within a few minutes. Even though such an
attack can have very unpleasant consequences, its effects are
only temporary since they can be reversed by the tedious
process of bringing each lamp to within a few centimeters
from its legitimate controller and reassociating them.

To test whether the attacker can cause more permanent
damage, we used a combination of known and novel tech-
niques in order to reverse engineer the process chosen by
Philips in order to make a lamp firmware update possible.
We did it only by using updates for older models lights as
reference, without ever seeing any actual firmware update
issued by Philips for the new Atmel chip. We discovered
that in order to be accepted by the lamp, each firmware
update had to be both encrypted and authenticated by a
state of the art AES - Counter with CBC-MAC (CCM)
cryptographic algorithm; however, all the lamps (at least
from the same product type) use the same global key. We
managed to deduce all the secret cryptographic elements
used by Philips (such as IV and key) within a few days,
using novel side channel attacks that used only cheap and
easily obtained equipment costing a few hundred dollars,
and without physically extracting them from their secure
memory. Once we obtained these secret values, we could
create any new firmware and upload it into any Philips Hue

lamp.
We have thus demonstrated that a really devastating

low-budget attack can be mounted on this IoT system: A
single infected lamp with a modified firmware which is
plugged-in anywhere in the city can start an explosive chain
reaction in which each lamp will infect and replace the
firmware in all its neighbors within a range of up to a
few hundred meters. This is similar to the worm scenario
which was accidentally triggered by Robert Morris Jr., and
brought the whole internet to a standstill within minutes in
1988. To avoid any similar accidental outcome due to our
experiments, the only change we actually made in the new
firmware we installed in the infected lamps was to change
the firmware version number string to IrradiateHue,
which could not possibly cause any harm. However, a real
attacker could permanently brick all the infected lamps by
simply disabling their firmware update process. Such lamps
cannot be rescued, and have to be thrown away.

Our new attack differs from previous attacks on IoT
systems in several crucial ways. First of all, previous attacks
used TCP/IP packets to scan the internet for vulnerable IoT
devices and to force them to participate in internet-based
activities such as a massive DDOS attack. Since internet
communication is heavily monitored and can be protected
by a large variety of security tools, such attacks can be
discovered and stopped at an early stage, at least in principle.
Our attack does not use any internet communication at all,
and the infections jump directly from lamp to lamp using
only unmonitored and unprotected ZigBee communication.
Consequently, it will be very difficult to detect that an attack
is taking place and to locate its source after the whole light-
ing system is disabled. Another major difference is that our
attack spreads via physical proximity alone, disregarding the
established networking structures of lamps and controllers.
As a result, such an attack cannot be stopped by isolating
various subnetworks from each other, as system adminis-
trators often do when they are under attack. In this sense
the attack is similar to air-borne biological infections such
as influenza, which spread almost exclusively via physical
proximity. Finally, previously reported attacks are carried
out via linear scans and infections which are all carried out
in a star-shaped structure with a centrally located attacker,
whereas our chain reaction attack spreads much faster by
making each infected lamp the new source of infection for
all its adjacent lamps; the attacker only has to initiate the
infecting with a single bad lamp, and can then retire and
watch the whole city going dark automatically.

The paper is organized as follows: the remainder of the
introduction will first discuss how widely the worm could
spread in the RF environment, summarize the related work
on IoT lightbulb attacks, and present our attack. Section 2
provides the necessary background for the attack: first we
will describe the ZigBee Light Link (ZLL) standard which
is used by the Philips Hue bulbs, and describe the features
we will target in this attack such as the commissioning
and upgrade process. In Section 2 we will also summarize
the cryptographic primitives and the side-channel attacks
we will be using against them. Section 3 will describe

Figure 1. 2D continuum percolation with disks

the physical hardware setup, along with the results of a
preliminary power analysis attack against the hardware.
Sections 4, 5, and 6 are the technical details of the attack.
Section 4 provides details of the upgrade process and how
it relates to spreading a worm, assuming that the correct
encryption keys could be found to disseminate a valid
encrypted and signed firmware file. Section 5 uses power
analysis to recover the encryption keys (and other associated
secret information such as the I.V.), which our novel attack
against AES-CCM that requires only approximately one to
two times the effort of breaking AES-ECB. With encryption
keys known, in Section 6 we solve the problem of taking
control of a device at very long ranges, which allows us
to feed a device the ‘updated’ firmware image which we
have encrypted & signed with the recovered keys. Finally
section 7 will provide some examples of what this worm
could accomplish, before concluding the paper in Section
8.

1.1. Estimating the critical mass

Consider a city whose area is A, and assume that its
shape is roughly circular (i.e., it is flat, convex, not too
elongated, and without holes). We place N smart lights
at random locations within the city, and define an infec-
tion graph by connecting any two lights whose distance
is smaller than D by an edge. The connected components
in this graph define the possible infection patterns which
can be started by plugging in a single infected light. For
a small N all the components are likely to consist of just
a few vertices, but as N increases, the graph goes through
a sudden phase change in which a single giant connected
component (that contains most of the vertices) is created.
This is the critical mass at which the infection is likely to
spread everywhere in the city instead of remaining isolated
in a small neighborhood.

The mathematical field dealing with such problems is
called Percolation Theory, and the critical N is called the
Percolation Threshold. A good survey of many variants of
this problem can be found in [2], and the particular version
we are interested in appears in the section on thresholds
for 2D continuum models, which deals with long range
connectivity via overlapping two dimensional disks of radius
R, as described in Fig 1. Since two points are within a
distance D from each other if and only if the two disks of
radius R = D/2 around them intersect, we can directly use
that model to find the critical mass in our model: It is the
value N for which the total area of all the randomly placed
disks (i.e., πR2N) is about 1.128 times larger than the total
area A of the city. In other words, N = 1.128A/π(D/2)

2.
To get a feeling for how large this N can be, consider a

typical city like Paris, which is fairly flat, circular in shape,
and with few skyscrapers that can block the available lines
of sight. Its total area is about 105 square kilometers [4].
According to the official ZigBee Light Link website [16],
the range of ZigBee communication is between 70 meters
indoors and 400 meters outdoors 1. There is probably no
single number that works in all situations, but to estimate
N it is reasonable to assume that one lamp can infect other
lamps if they are within a distance of D = 100 meters,
and thus the disks we draw around each lamp has a radius
of R = 50 meters. By plugging in these values into the
formula, we get that the critical mass of installed lights in
the whole city of Paris is only about N = 15, 000. Since
the Philips Hue smart lights are very popular in Europe and
especially in affluent areas such as Paris, there is a very
good chance that this threshold had in fact been exceeded,
and thus the city is already vulnerable to massive infections
via the ZigBee chain reaction described in this paper.

1.2. Related Work

In recent years numerous works on the security of IoT
devices and protocols were published. Regarding connected
lights, several vulnerabilities were discovered. Alex Chap-
man [5] managed to extract hard coded encryption keys
used to encrypt data sent between LIFX brand light bulbs.
From this he recovered the Wi-Fi password of the local
network that was sent between the bulbs. Dhanjani [6] had
shown DoS (denial of service) attacks against Philips Hue.
Ronen and Shamir [7] have shown how to use the Philips
Hue and LimitlessLed systems to create a covert channel
to exfiltrate data from air-gapped networks, and to create
strobes that can cause epileptic seizures. Heiland [8] found
weaknesses in the Osram Lightify app such as unencrypted
Wi-Fi passwords, lack of authentication in the gateway
and vulnerable usage of ZigBee Home Automation profile.
However those vulnerabilities are not related to the ZLL
(ZigBee Light Link) protocol discussed in this paper.

There are several works specific to the ZLL protocol and
related products. Armknecht et al. [9] proposed a formal

1. The Philips engineers we talk with stated that in a dense urban
environment, the effective range can be less than 30 meters

security model. Zillner [10] and Morgner et al. [11] demon-
strated weaknesses in ZLL and ways to take over lights.
However to be able to take over lights from a distance they
had to use custom hardware with much stronger transmis-
sion power. O’Flynn [12] reverse engineered some of the
Philips Hue security design choices, where he raised the
possibility of a lightbulb worm, but did not bypass either
the firmware security protection or provide a spreading
mechanism.

The first power analysis attacks on Atmel AES hard-
ware accelerators was done by Kizhvatov [13] against
the Atmel XMEGA using AES-ECB mode. O’Flynn and
Chen [14] used the same leakage model to attack the At-
mel MegaRF128RFA1 hardware, and attacked the ZigBee
CCM* mode of operation under the assumption of a known
nonce. Jaffe [15] had shown an attack on counter mode
encryption with unknown nonce, but would require 216

sequential block operations on our hardware with the same
nonce while our firmware can have at most 214 traces.
Moreover, modifying the method by which the counter
updates (using a linear feedback shift register, for example)
would present a serious challenge to his attack.

1.3. Our attack

Our attack is much stronger than all of the previ-
ously described attacks since it creates the first native and
autonomously self spreading ZigBee worm, targeting the
Philips Hue light system. It is a combination of two novel
attacks:

1) A Correlation Power Analysis (CPA) attack against the
CCM mode used to encrypt and verify firmware up-
dates, allowing us to encrypt, sign and upload malicious
OTA updates to infect lights.

2) A takeover attack allowing us to take full control
over lights from long distances without using custom
hardware.

Our novel takeover attack uses a bug in Atmel’s im-
plementation of the ZLL Touchlink protocol state machine
(used in Philips Hue lights) to take over lights from large
distances (up to ZigBee wireless range that can be as far as
70 meters indoors or 400 meters outdoors [16]), using only
standard Philips Hue lights. Our attack does not assume any
prior knowledge about the attacked lights, and does not even
require the knowledge of the ZLL’s secret master key. This
attack can run simultaneously on all lights within range. As
we demonstrate, this attack can be used in wardriving and
warflying scenarios.

Our novel CPA attack targets the verification phase of the
CCM mode. Our attack has several advantages over previous
power analysis attacks against AES-CCM:

1) It does not assume any knowledge about the nonce or
IV.

2) It works with any type of counter implementation.
3) It does not require any valid encryption sample.
4) It requires at most the verification of messages as short

as 2 blocks.

Figure 2. The ZLL architecture.

Figure 3. Philips Hue bridge (gateway), lights, and wireless switch.

5) It requires at most twice the number of traces required
to break ECB mode.

We used this novel attack to recover the Philips Hue OTA
update verification and encryption keys. With those keys we
were able to create a malicious software update and load it
to a Philips Hue light.

2. ZLL (ZigBee Light Link) and Smart Light
systems

As seen in Figure 2, smart light systems, give users
wireless control over lights either from a remote control or
from a smart-phone application using a gateway [16]. The
gateway is used to bridge the IP world to the ZLL world.
ZLL, is an industry standard intended “for interoperable and
very easy-to-use consumer lighting and control products. It
allows consumers to gain wireless control over all their LED
fixtures, light bulbs, timers, remotes and switches” [16],
[17]. It is developed and supported by most of the major
home lighting manufacturers like Philips, GE and OSRAM.

2.1. The Philips Hue personal wireless lighting sys-
tem

Philips Lighting had 2015 sales of 7.4 Billion EUR,
of which 7% was for consumer products (as opposed to
industrial solutions) [18]. If even a small (5%) of these
consumer sales were for smart lighting product, this would
translate to millions of shipped units in 2015 alone.

Although it is hard to get reliable figures, Philips Hue
is considered the most popular smart light system. It was
first released in 2012 and since then a large variety of
Hue products were introduced. As can be seen in figure 3
their product line includes different models of lights, bridges

and switches. Philips provides an open API to the bridge,
allowing 3rd parties to develop applications that can control
the lights.

2.2. ZLL Touchlink Commission protocol

In the ZLL official website [16], we can find the “adver-
tised security” of the ZLL standard, claiming to use authen-
tication to “secures networks from neighboring networks”,
while allowing interoperability of products from different
vendors. The basis for this is the ZLL Touchlink commission
protocol defined in the ZLL standard [17]. This protocol is
used to establish PANs (Personal Area Networks) and then
instruct new devices (such as light, remotes etc.) to join
the PAN and to receive the encryption key. Each PAN has
its own unique encryption key which is used to encrypt and
authenticate the messages sent in the PAN. For example, the
Philips Hue starter kit includes two lightbulbs and a bridge
that can be connected to a router for internet access. The
controller and lightbulbs are preconfigured to be in the same
PAN sharing a secret key. To connect a new lightbulb to the
bridge, the Touchlink protocol is used to join the lightbulb
to the existing PAN.

The ZLL protocol messages are not encrypted or signed.
Encryption is only used to encrypt the unique encryption key
sent to new devices joining the network. For this encryption,
a secret “Master ZLL key” is used. This key is shared by and
stored on all ZLL certified products. It is not specified in the
standard and is only provided to ZigBee alliance members
that are developing ZLL certified products. Unsurprisingly
this master key was leaked in 2015 and can be found on-line
[10]

Each Touchlink protocol instance is called a transaction.
A transaction involves an initiator (in our example a bridge)
and one or more targets. The initiator starts a transaction
by sending a broadcast message called Scan request. Each
transaction is identified by a unique 32-bit random nonzero
ID that is sent in the Scan request. All other messages in the
transaction will include this Transaction ID. Upon receiving
the Scan request, the target sends a Scan response message
that includes a random nonzero 32-bit Response ID. The
combination of the Transaction and Response ID’s identifies
a unique transaction between an initiator and a specific
target. There are 2 types of messages that can change the
state of a lightbulb.

1) Reset to factory new request – Receiving this message
with a valid Transaction ID will cause the target device
to reset to factory new, deleting all PAN information
and keys.

2) Join (or start) network request – These messages in-
struct the target to join the initiator PAN. They include
the PAN’s unique encryption key, encrypted using the
ZLL master key derived with the Transaction and Re-
sponse ID.

2.2.1. Touchlink’s proximity check protection mecha-
nism. The Touchlink protocol allows any initiator with the
ZLL master key to force any lightbulb to reset to factory

Figure 4. Philips Hue board

new or to join a new PAN. For example one can try to use
a bridge to take over his neighbor’s lightbulbs. To prevent
this ZLL enforces a proximity check mechanism, that checks
that the initiator is in very close physical proximity to the
target.

The Scan request is sent with a nominal output power of
0 dBm. Upon receiving this Scan request the target device
checks if the measured RSSI (Received Signal Strength In-
dication) is above a certain manufacturer specific threshold.
Otherwise it will ignore the request. In our experiments with
the First Gen Philips Hue bridge, an older model lightbulb
(Hue LCT001) will respond from about 1 meter distance, but
a newer model (Lux LWB004) will only respond from about
45 centimeters. However in the Second Gen Bridge it seems
that Philips increased the transmission power significantly
and for the same Lux model the range increased to about
75 centimeters (about 2.7 times stronger).

2.3. Zigbee OTA (Over The Air) update

The ZigBee alliance provides a standard for OTA up-
dates [19]. As written in the standard: “The main goal of
Over The Air Upgrade cluster is to provide an interoperable
mean for devices from different manufacturers to upgrade
each others image”. The standard defines a client server
protocol for the transfer of an update image to the client
(a lightbulb in our case). Although the standard suggests
using asymmetric verification of authenticity and integrity,
this is not mandatory for most ZigBee applications including
ZLL.

2.4. Philips Hue light hardware and software

Although the first version of the Philips Hue light used
Texas Instruments’ CC2530 SoC (System on Chip), it was
discontinued in 2012 and all lights produced afterwards use
Atmel’s ATmega2564RFR2 SoC. This SoC includes many
different components:

1) An Atmel AVR microprocessor.
2) 256KB flash for bootloader and firmware code.
3) 32KB SRAM for program data.
4) An AES hardware accelerator.

5) An IEEE 802.15.4 low-power radio transceiver.
6) Anti debug fuses can be set to protect the firmware and

internal data from being accessed from the outside.
These elements allow Philips to provide a system where

the firmware, keys and all sensitive operations are protected
inside the SoC with no access from outside the SoC. The
Philips Hue light also comes with an external 4Mbit SPI
(Serial Peripheral Interface) flash chip. Part of this flash is
used to store the encrypted OTA images. A board that was
extracted out of a Philips Hue Lux model light can be seen
in Figure 4.

We assumed that Philips used Atmel’s open source Bit-
Cloud ZLL stack as a base for their code. This assumption
can be verified by viewing the SoC serial interface log
messages which reference the BitCloud ZLL stack [12].

2.5. Counter with CBC-MAC encryption mode

CCM [20] is an authenticated encryption mode used to
sign and encrypt data. It is used in IPSEC [21], TLS 1.2 [22]
and the IEEE 802.15.4 [23] upon which ZigBee is based. As
seen in Figure 6 the inputs to the CCM mode are a nonce
N, associated data for authentication A, and plain data for
encryption P. A and P are signed using CBC MAC. The
nonce is combined with an incrementing counter, and then
encrypted in ECB mode to create a CTR (counter based)
stream cipher encryption used to encrypt P and the resulting
CBC MAC tag. It is important to note that the same key is
used both for the CBC MAC and CTR encryption.

2.6. Differential Power Analysis (DPA)

Side channel power analysis measures the power con-
sumed by a digital device as it performs operations. With
this attack it is possible to infer something about the data
being processed by the device, which was first demonstrated
as a method of breaking cryptographic algorithms by Kocher
et al. [24]. While DPA may refer to both a specific technique
and a general field, we will use DPA in this paper to refer
to the original difference of means method of partitioning a
number of power traces into two different sets from [24].

The difference of means relies on splitting power traces
into two sets: one where an assumed intermediate bit is ‘1’,
and another set where the assumed intermediate value is ‘0’.
By subtracting the means of these sets, we can determine
the value of an intermediate bit. This is shown in practice
in Figure 5, which shows the recovery of one byte of an
AES-CTR output, with the use of the XOR operation. At a
specific point (around sample 6952 here), we do a threshold
if the difference is positive or negative. It can be seen from
the figure the difference is very pronounced and in practice
can be reliably recovered. This is then simply repeated for
all 16 bytes.

Note the difference of means shows such a large spike
only at the moment in time the manipulation is occurring.
Other times show no noticeable difference – notice for
example samples 6990 and onward in Figure 5. In practice

Figure 5. Bitwise DPA attack on AES-CTR ‘pad’, where all 8 bits are
recovered.

it is possible to recover this from a black-box device with
unknown timings, such as we accomplished in this paper.

2.7. Correlation Power Analysis (CPA)

The subsequently published CPA attack by Brier et al.
[25] uses a more complex leakage assumption, such as
the one that the number of bits set to ‘1’ on a data bus
has a linear relationship with the power consumption at
the moment on time the data is manipulated. Rather than
requiring an attack to determine a single bit at a time, the
CPA attack makes it possible to rapidly determine the value
of an entire byte. The CPA attack is especially effective
when targeting the output of non-linear functions, such as
the output of the S-Box operation in AES.

This work will use both the original bitwise difference-
of-means DPA attack for determining the result of certain
XOR operations (such as the AES-CTR ‘key stream’), and
the byte-wise CPA attack for breaking the AES hardware
accelerator.

3. Experimental Setup

3.1. Overview

Our experimental setup includes three main parts:
1) A research experimental setup used to test the ZLL

protocol and its implementation.
2) A hardware attack setup used to reverse engineer and

attack the Philips Hue OTA update process.
3) A ZLL attack setup used for testing and demonstrating

our takeover attack.

3.2. The ZLL experimental setup

We created an experimental setup that allows us to send
and receive ZLL messages and run complex state machines

Figure 6. CCM encryption mode

in order to research and implement our attacks. Although
similar work had been done previously by Wright [26] and
Goodspeed et al. [27] we decided to create our own setup
that was more suitable to our available hardware and our
specific needs, and also to implement the relevant parts of
the ZLL standard that were not previously available.

3.2.1. Hardware setup. We needed a RF transceiver ca-
pable of sending and receiving ZigBee messages. We have
chosen to use Texas Instruments’ CC2531EMK evaluation
board. It is a USB dongle that can be connected to a PC,
and uses the same CC253x family chip and ZLL stack as
the older Philips Hue lights (the only difference is the added
USB support). The default software provided allows for
sniffing of raw ZigBee messages. We have compiled our
own code to be able to also send raw ZigBee messages.

3.2.2. Software framework. We created a Python imple-
mentation of most of the ZLL stack. This provides us a
simple and quick method to generate and parse ZigBee and
ZLL messages, and also to implement a state machine for
implementing our attack.

3.3. Power analysis setup

3.3.1. Philips Hue board. Several of the 1st-generation
Philips Hue (BR30 color) and 2nd-generation Philips Hue
Lux (white-only) bulbs were disassembled. The 2nd (and
later) generation Lux bulbs are using an Atmel AT-
Mega2564RFR2 device. Our first power analysis was done
on a modified Hue board. Later, a custom PCB was designed
to fit the ATMega2564RFR2 along with support circuitry
such as the SPI flash chip. Several of these boards were built:
some were loaded with chips removed from production Hue
lights, some were loaded with blank chips.

Figure 7. Power analysis on the ATMega2564RFR2 from a Philips Hue
bulb was done using a ChipWhisperer-Lite (top left), connected to a custom
PCB with the ATMega2564RFR2 mounted (middle blue PCB) and using a
Bus Pirate (bottom small PCB) to reprogram a SPI flash chip with various
byte sequences.

The boards loaded with Hue chips were used in breaking
the actual bootloader and encryption key, whereas the blank
chips were used in investigating the power signature of
the ATMega2564RFR2 when performing known tasks, and
determining the rough amount of power traces required to
break the hardware AES peripheral.

For power analysis we needed many power traces where
the bootloader is decrypting the same block, but that block
takes on random input values. To accomplish this, a low-
cost SPI programmer quickly re-writes the SPI flash chip,
and the ATMega2564RFR2 reset pin is toggled. This causes
the bootloader to attempt loading of the binary – loading
which will fail after the bootloader realizes the signature is
invalid, but by this state has already performed the required
operations for power analysis to succeed.

The power measurement itself is done via a resistor
inserted in the core power supply pin, as in [14]. The power
measurement is taken using the ChipWhisperer hardware
platform [28], and a photo of the power measurement setup
is shown in Figure 7.

The ATMega2564RFR2 device was assumed to have
similar leakage characteristics as the ATMega128RFA1 ex-
plored in [14]. To evaluate our test setup we performed
a CPA attack against the hardware accelerator, which is
detailed in Appendix A.

With this setup we are able to attack AES-ECB using
a CPA attack, and reliably recover the encryption key. As
in previous work this can be done on later rounds, which
can also be used for testing if the correct first-round key
was recovered when there is no access to the output of the
AES-ECB block.

3.4. ZLL attack setup

For our attack demonstrations we used a slightly differ-
ent setup. For our transceiver we used the same TI CC2531
chip but on a Zlight2 evaluation board. This board has a
slightly better RF characteristics and it is easier to mount on
a drone during warflying missions. As we wanted our attack
kit to be fully autonomous we have implemented our attack
logic in C code using Texas Instruments’ ZigBee ZStack.

We bought 4 different models of the Philips Hue lights
to test our attack on.

4. Creating a lightbulb worm

4.1. Attack scenario

Our goal is to create a worm that can automatically
spread among physically adjacent lights in a chain reaction
which spread over a large area using only the standard
ZigBee wireless interface. Our worm will spread from one
lightbulb to all the neighboring lightbulbs and from one ZLL
network to another. For this we require two main abilities:

1) Persistence of code execution on a lightbulb.
2) Lateral movement - a method for one lightbulb to infect

another lightbulb.

4.2. Persistence of code execution in the Philips Hue
system

We explored two methods to achieve persistence in code
execution

1) Exploiting a software vulnerability.
2) Using the ZigBee OTA feature.

The Philips Hue lightbulbs are very hard targets for finding
and exploiting software vulnerabilities. They use processors
with Harvard architecture that does not allow for code
execution from memory. We are forced to use only ROP
(Return-oriented programming) attacks that require knowl-
edge of the code and customization for each model. Instead
we looked at the possibility of exploiting the ZigBee Over-
the-Air Upgrading Cluster standard [19]. As this standard
allows a lot of customization for different vendors, we
wanted to record and analyze a Philips Hue software update.
Unfortunately there was no software update available to
any of the models we had in our possession. We wrote a
python script using our ZLL testing framework that allowed
us to impersonate a lightbulb and to change our version,
MAC address and so on. Searching online we found out
several different older Hue models that had software updates
in the past. By looking at recordings for the models we
had, we found the translation between the Human readable
software version and the hex code that the OTA standard
requires to send over the air. For example in our Lux model
the software version is 66012040 – 66 0 12040 – 0x42
0x00 0x2f08 – 0x42 0x00 0x2f 0x08. Using the API we
instructed the bridge to complete the OTA process with our
impersonation code. The firmware image that we recorded

was not dependent on our impersonated lightbulb MAC
address. This brought us to the conclusion that the software
is protected by a single key that is shared at least between all
the lights from a specific model. Implementing asymmetric
cryptography is currently uncommon in this type of prod-
ucts (as can be seen in several OTA implementations such
as Atmel’s BitCloud [29] and Texas Instruments’ Crypto-
Bootloader [30]). OFlynn [12] have also reached similar
conclusions. Assuming that only symmetric cryptography
is used, recovering the encryption and authentication keys
from one Philips Hue lightbulb will allow us to do a software
update to any other lightbulb (at least from the same model)
and thus load our own malicious code.

An important observation is that unlike computers or
smart phones, this kind of attack is irreversible. There is no
way to re-flash the Philips Hue lights firmware to get rid of
our worm, and the only possible solution is to replace the
lightbulb with a new one. Note that in order to prevent the
new lightbulb from being infected in the same manner, the
user must wait for a software patch to be available from the
manufacturer before installing it.

The user however would need to power on the bulb to
allow the manufacture update to occur. Obtaining this update
requires at minimum first installing the bulb and setting up
the bridge – currently it additionally requires the user to
download and setup the official app and agree to the terms
of service before the update process begins.

The worm however could begin downloading to the bulb
as soon as power is applied, not being dependent on the base
station. In addition the worm can rapidly “retake” new bulbs
which the user has attempted to associate with the legitimate
base station, making it almost impossible for vulnerable
bulbs in range of another infected bulb to receive an OTA
patch before the worm has spread.

4.2.1. Understanding the Philips OTA image structure.
As there were no software update yet available for one of
the new models2, we looked for a way to create our own
OTA image. We used our impersonation code to retrieve all
available OTA image files for the older models. We then
noticed that the new models rejected the old firmwares. We
have reversed engineered the Philips OTA image structure.
With some trial and error we manipulated an old firmware
image, to be compatible with the hardware type and image
size range expected by the new Atmel model. As the light
uses the external SPI flash to store the update Image, we
used a SPI sniffer to record and understand the commu-
nication between the processor and flash during the OTA
process. To start an OTA image verification process all we
need is to set a flag on the flash and put the image in a
specific offset in the flash. During power on, the processor
checks the flag, and if it is set, it starts to read and then
verify the OTA image.

4.2.2. Extracting encryption and signature keys. To be
able to create a valid malicious software update, we had

2. Firmware updates for these bulbs were released before this paper was
published, but at the time this work was completed they were not available.

to understand the cryptographic primitives used to encrypt
and sign the update firmware, and extract the keys used. As
mentioned in [12], Philips had set all of the ATMegaRF anti
debug fuses, to disable external reading of the program and
keys saved internally. In section 5 we describe how we were
able to break Philips bootloader using CPA.

4.3. Lateral movement - spreading the worm

To be able to carry out a software update on a lightbulb,
we must first be on the same network and share the same
key. This can be done either by sniffing the Touchlink pro-
tocol when new lights are added, or by forcing the lightbulb
to join our own network. As the ZLL secret master key was
leaked, we can use the Touchlink commissioning protocol to
take over lights. However we are limited by the protocol’s
proximity check mechanism which forces us to be very close
to the attacked light (as discussed in section 2.2.1). Previous
methods to cause a key exchange in the network or to force
the light to join a new network required either very close
physical proximity or a customized hardware with much
stronger transmission power [10], [11], and in that case we
will not be able to use one standard light to infect another
light. To implement our worm we have to find a way to
do this from a long distance using normal power levels.
In section 6 we show how we accomplished this with the
Philips Hue lights.

5. Breaking Philips’ cryptographic bootloader
with Correlation Power Analysis

5.1. Understanding Philips OTA image crypto-
graphic primitives

Our initial assumption was that Philips used the CCM
encryption mode for the OTA image. This enables them to
reuse the CCM code from the Zigbee encryption, which was
also used in an old TI cryptographic bootloader implemen-
tation, that could have been used as a reference to their
implementation in the older TI based models.

When we started this work, the newer bulbs based on
the Atmel ATMega2564RFR2 did not have an OTA update
released. Instead we used an image for the CC2530 bulbs
as a reference. To perform the bootload process, the new
(encrypted) image is programmed in the SPI flash. On boot
the bulb will first check a flag to indicate if an OTA update
is pending,; if so, it reads the entire image to verify the
signature. Then it reads the image a second time to actually
perform the flash programming. We determined this based
on (1) modifying the image – which would invalidate the
signature – causes the bulb to perform only the first read,
and (2) the second read-through contains gaps which align
with the expected flash memory page-erase process required
when actually programming.

As we knew the leakage mode for the AT-
Mega2564RFR2 AES hardware engine, we targeted
the newer hardware. The CC2530 OTA upgrade file was

modified by changing the hardware type and image file
size to fit the requirements of the bootloader on the new
hardware, so the bootloader on the ATMega2564RFR2
would attempt the verification process. The actual
verification will fail as this was not a valid OTA image for
this platform, meaning we were able to perform this attack
without having access to a valid firmware image.

The hardware AES engine on the ATMega2564RFR2
has a unique signature which makes detecting the location
of AES straightforward. Looking at the power traces of the
verification process we could notice two AES operations for
each 16 byte block, which supported the CCM assumption
as shown in the top portion of Figure 8.

In addition, we performed a DPA attack where the leak-
age assumption is simply the input data itself being loaded.
This shows locations where the input data is manipulated
(this will also track linear changes to the data, such as an
XOR operation). We notice the input data is manipulated
after the first AES operation and before the second AES
operation as in the lower part of Figure 8.

This would be consistent with the first AES operation
being CTR mode, the output of CTR mode being a pad
which is XORd with the input data to decrypt the block.
The decrypted data is then fed into the CBC block. Note
the XORs of the input data still generate the high difference
spikes, as the input data is effectively being XORd with
constants (either the AES-CTR output with the same CTR
input, or the CBC output).

5.2. CPA attack against the CCM CBC MAC ver-
ification

Under the CCM assumption, we had to find a way to
break the mode of operation under the following limitations:

1) We have no knowledge of the key
2) We have no knowledge of the encryption nonce
3) We have no knowledge of the signature IV or associ-

ated data.
4) We have no sample of a valid encrypted message.
5) Our target won’t accept messages larger than around

214 encryption blocks.
We will first summarize the existing related work on

breaking AES-CCM.

5.2.1. Previous work on AES-CTR and AES-CCM.
Performing power analysis on AES-CTR mode is made
more complicated as the majority of the bytes are constant
(the nonce), and only the counter bytes vary. A standard
first-order CPA attack is only able to recover the key-bytes
where the associated input bytes vary, meaning that at most
two bytes of the counter are recovered. A solution to this
was presented by Jaffe, where Jaffe performs the attack over
multiple AES rounds [15].

Jaffe’s technique of performing the attack over multiple
rounds allows recovery of a combination of the AES Round-
Key XORd with either the constant plain-text or the output
of the previous round. This allows us to ignore the unknown
constant values, as they will eventually be removed [15].

Figure 8. Power analysis of processing a single 16-byte block by the cryptographic bootloader. HW-AES locations are marked based on comparison to a
reference platform performing hardware AES encryptions.

The AES-CTR attack requires 216 encryptions, to ensure
power traces are recorded for all values of all 16 bits of the
counter. While Jaffe reports the attack may succeed with a
smaller subset of these 216 traces, the subset will include
traces from throughout the set, such that even if a set of 214
traces pulled from the larger set was sufficient, capturing
only 214 consecutive traces will not provide enough data.

The leakage observed by the hardware AES peripheral
is such that leakage occurs before the S-Box operation, and
it is not possible to reliably perform the attack using the
output of the S-Box. Had the output of the S-Box leaked,
it would have been possible to recover higher-order bits of
the key for which there is no associated toggling of higher-
order bits of input data, due to the non-linear property of
the S-Box.

The AES-CCM as used in IEEE 802.15.4 was specifi-
cally broken by O’Flynn and Chen, which used a modified
version of Jaffe’s attack [14]. Rather than use successive
encryptions with AES-CTR, O’Flynn used the known map-
ping of input data to the AES-CTR nonce to allow him to
perform power measurements where 4 bytes of the nonce
are varied, but the AES-CTR counter is constant.

As in Jaffe, this required O’Flynn to perform multiple
rounds of CPA attacks as the key was progressively recov-
ered. For every round-key recovered, some work is needed to
validate that it appears to be correct as well, since any error
will compound. This was done by looking for correlation
spikes for round i+ 1, when comparing various candidates
for round key i. O’Flynn did not use the AES-CBC portion
of the AES-CCM process and instead only broke the AES-
CTR portion.

A solution to the general problem of unknown counter
inputs is also given by Hanley et al. where a template
attack can be performed even with completely unknown
input to the AES block [31]. This attack has the downside of
worse performance (in terms of number of traces required)

compared to a known plaintext (or ciphertext) attack.
Because our target only accepted about 214 16-byte

blocks, we had limited ability to use the existing AES-CTR
attacks. We also were unaware of the nonce format – if we
had a known mapping of some input data field to AES-CTR
none, the attack in [15] as used by [14] would have been
possible.

5.2.2. Unknown Plaintext with Chosen Differentials CPA
attack against AES. For our attack we introduce a novel
method of efficiently converting most chosen plaintext CPA
attack against ECB mode in the case of unknown plaintext
with chosen differentials. Our attack works under the fol-
lowing assumptions:

1) We have a black box chosen plaintext CPA attack that
can break the first round of an ECB mode encryption
implementation.

2) We do not know the input to our ECB mode encryption,
but we can measure repeated encryptions with the same
unknown input XORed to any chosen differential.

3) For each differential we can measure the power trace
of at least the first and second AES round.

As in previous works [15], we use the notion of a
‘modified key’. We will use the following notation:

Pi is the ith byte of the unknown plaintext input
to the AES encryption.

Di is the ith byte of the chosen differential.
Kj,i is the ith byte of the jth round key of AES.

In the general case of first round of AES encryption, the
key and plaintext bytes are used in calculation of the output
of the SBOX. The output of the SBOX on byte i can be
written as Ouputi = S(Pi ⊕ K1,i). Any chosen plaintext
CPA attack on the first round will be able to retrieve all of
the bytes of K1 by measuring traces of different inputs P.
In our case Pi is constant and we can choose Di, we get
Ouputi = S(Di⊕Pi⊕K1,i). We will denote our ‘modified

key’ as K ′1,i = Pi⊕K1,i, rewriting Ouputi = S(Di⊕K ′i).
We can now use our black box CPA attack to retrieve all
of the bytes of K ′1. Using D and K ′1, we can now calculate
the input to the second AES round. As the first and second
round of AES are identical, we can use the same black box
CPA attack against the second round with known inputs, and
retrieve the real second round key. In most CPA attacks we
can choose our inputs at random, and use the same power
traces we used for the first round attack. If real chosen
plaintext is needed, we can use the invertible structure of
the AES round, and calculate the required differentials in
the first round.

After getting the real second round key K2, we can use
the invertible AES key expansion algorithm to find K1 and
then all bytes of Pi. In the normal case where only random
plaintext is needed for the CPA attack, we can break our
ECB mode with unknown plaintext and chosen differentials
in the same number of traces required to break ECB with
chosen plaintext.

5.2.3. Breaking AES-CCM. For efficiently breaking the
CCM mode, we attack the CBC MAC state calculation, on
two consecutive blocks. We’ll first summarize some notation
for AES-CCM.

If we consider the AES-ECB function using key k as
Ek(x), we can write the CTR and CBC portions of the CCM
mode as follows. The input will be in 16-byte blocks, where
block m is the index. CTR mode requires some IV and
counter which is input to an AES-ECB block, we assume
our input is {IV ||m}, where IV is a 14-byte constant that
is concatenated to the block number m. Counter mode first
generates a ‘stream’ based on the counter and IV:

CTRm = Ek({IV ||m})

This stream is XORd with plaintext/ciphertext for encryp-
tion/decryption respectively. Thus decrypting block PTm
would be:

PTm = CTm ⊕ CTRm

In addition to decryption, CCM provides the authentication
tag which is the output of a CBC mode encryption across
all PTm (and possibly other) blocks. The internal state of
this CBC mode after block m will be CBCm, which can
be written as:

CBCm = Ek(PTm ⊕ CBCm−1)

= Ek(CTm ⊕ CTRm ⊕ CBCm−1)

If we target a given block m, CTRm and CBCm−1 will
be constant. CTm is the ciphertext we input to the block
(e.g., by the firmware file we sent the device), allowing us
to control the value of CTm. We consider our unknown
plaintext to be CTRm⊕CBCm−1 and using the ciphertext
as the chosen differential, and then we can use our CPA
attack to recover the CBC MAC key k, and the value of
CTRm ⊕ CBCm−1. As the CCM mode reuses the key
between encryption and verification we also get the key used
for encryption. We now repeat our attack for the first round

of block m+1. From our attack on block m we can calculate
CBCm, and from our attack on block m+1 we can retrieve
CTRm+1 ⊕ CBCi and from that CTRm+1. We can now
find the nonce used by decrypting CTRm+1 with the key
we found.

5.2.4. AES-CTR DPA Recovery Optimization. Our attack
on CCM requires twice the traces of ECB mode since we
must attack two blocks: both CBCm and CBCm+1 in order
to retrieve the CTR output. We can optimize our attack by
using a bitwise difference-of-means DPA attack to recover
the output of the AES-CTR encryption directly for block m.
The DPA attack is attacking CTRm ⊕ CTm operation. An
example of this on the actual bootloader power measurement
is shown in Figure 5, where a single byte is being recovered.

Note there may be multiple locations where a strong
‘difference’ output is seen. These locations come about as
any linear operations on the CTm data will present such
spikes – for example not only the XOR we are targeting,
but also the data loading, and when the AES-CTR output is
used in the AES-CBC input. In addition there will be both
positive and negative spikes as the internal bus switches
from precharge, to final state, back to precharge.

We found about 10 locations with such strong differ-
ences across the entire trace, giving us 10 possible guesses
for the output of the AES-CTR on the first block on the
same traces under the CPA attack. Using the key retrieved
from the CPA attack, we tried decrypting the guesses, and
simply chose the one that decrypted to the correct counter
value in the last bytes. The correct guess occurred in the
window where the AES-CTR XOR operation was expected
to occur (around sample point 6950 in Figure 8), meaning
the additional guessing may not be required in most cases.

5.2.5. Extending the CCM attack to other block ciphers.
By combining the CPA attack and DPA optimization, we
can break any SPN(Substitution-permutation network) based
cipher block algorithm regardless of the key expansion
algorithm under the following assumptions:

1) We have a CPA attack that can break any round using
chosen plaintext.

2) We can measure the power traces for all rounds
3) The DPA attack provides a small number of possible

guesses for the output of the CTR.
We use the CPA attack against block m to retrieve the

CBC MAC state CBCm. By using the DPA attack we can
retrieve the possible guess to the CTR output CTRm+1. As
the CBC MAC encryption in block m+1 is Ek(CTm+1 ⊕
CTRm+1 ⊕ CBCm−1) we can now do a chosen plaintex
attack against block m+ 1 to retrieve all of the round keys
including the first round.

5.3. Loading arbitrary code

At this stage we know the AES-CCM key used by
both the AES-CBC and AES-CTR portions, and the AES-
CTR nonce format. We also have the CBC MAC state that

Figure 9. Screenshot of Hue App connected to a modified bulb; the version
number of bulb 6 has been modified by us in the firmware image.

is XORed to the first block (after encryption of IV and
associated data) that we can use as a ‘modified IV’.

We used a DPA attack to determine which bytes of the
header were manipulated after the last block of data was
received by the bootloader, assuming that those will be the
bytes of the MAC authentication tag being compared to the
calculated value.

Using this information we can now encrypt and sign
arbitrary code. As a first test, we decrypted one of the
CC2530 update images, changed some strings and then
re-encrypted the file with a newly calculated MAC. This
firmware was accepted by the light, confirming that we were
able to generate signed code. An example screenshot of the
official Philips Hue App showing a modified and unmodified
bulb is present in Figure 9. Note that the version number of
the modified bulb has been changed to IrradiateHue.

We then loaded a small program that read out the first
few pages of flash memory. On the CC2530 the bootloader
typically resides at the beginning of flash, so this allows
us to recover the complete original bootloader (along with
full information on keys, I.V., etc.). Note that on the AT-
Mega2564RFR2 there is an option which prevents applica-
tion code from reading out the bootloader, but this feature
was not enabled on Hue bulbs using the ATMega2564RFR2
we have investigated, meaning that we can perform this
same style of attack on newer lights.

6. Take over attack

6.1. Bypassing the proximity check mechanism

The proximity check ensures only a very close device
(approx 1m or less) is able to reset and then take over a
device, as was discussed in section 2.2.1. This proximity
check logic will be present in any ZLL compliant stack
(and product).

6.1.1. Atmel’s BitCloud Touchlink implementation. At-
mel provides their customers with a complete software
implementation of the Touchlink protocol in the BitCloud
stack under the ZLL Platform section. It is implemented in
two parts:

Listing 1. Size check examples
case SCAN REQUEST COMMAND ID:

i f (ind−>asduLeng th ==
s i z e o f (N I n t e r P a n S c a n R e q u e s t t))

{
P r o c e s s R e c e i v e d S c a n R e q u e s t (i n d) ;

}
break ;

case SCAN RESPONSE COMMAND ID:
/ / s i z e i s checked i n P r o c e s s R e c e i v e d S c a n R e s p o n s e

s P r o c e s s R e c e i v e d S c a n R e s p o n s e (i n d) ;
break ;

Listing 2. Response Parameters structure
t y p e d e f s t r u c t N L i n k T a r g e t R e s p o n s e P a r a m e t e r s t
{

u i n t 3 2 t t r a n s a c t i o n I d ;
u i n t 3 2 t r e s p o n s e I d ;
u i n t 8 t z l l I n f o ;
u i n t 8 t z i g B e e I n f o ;

} N L i n k T a r g e t R e s p o n s e P a r a m e t e r s t ;

1) N InterPan - Handles the InterPan layer, determines
what type of message was received, and does some
basic sanity checks

2) N LinkTarget - Implements the Touchlink protocol
state machine.

The code was written with security in mind. Message
sizes are either checked or a clear reference is made for
the location of the check. A code example can be seen in
Listing 1.

The proximity check mechanism is implemented in
N LinkTarget.c at the function ReceivedScanRequest. It
checks that the RSSI value is above a threshold that is
defined by the stack user for every specific product. Only
if the value is over the threshold it will save the message
parameters and start the Touchlink protocol state machine.

Upon receiving a valid Scan Request message, the
state machine waits for a random jitter time period (to
make sure not all lights respond at exactly the same
time). After that time period the function StartTransac-
tion StoreCurrentTransmitPower SendScanResponse-
StartChangeDelay is called. This function sends a Scan

Response message. The Transaction and Response ID are
saved in the ResponseParameters structure that can be
seen in Listing 2. To support multiple instances of the
Touchlink protocol the stack holds an array of length 3 of
this structure.

Upon receiving any other protocol message, the trans-
action ID parameter of the message is checked against the
values stored in the array. If the transaction ID is not found
in the array, the message is dropped.

6.1.2. Bypassing the proximity check. The Response Pa-
rameters structure seen at Listing 2 has no dedicated valid
flag variable. After boot, or at the end of a protocol session,
the structure is filled with zeros, as zero is considered an
invalid value for the Transaction Id.

Listing 3 shows the function IsTransactionIdActive that
is used to check if a Transaction Id is valid or not. The reader

Listing 3. Transaction Validation Check
/∗ ∗ Check i f t h e t r a n s a c t i o n i d i s a c t i v e .
\ n o t e The v a l u e z e r o i s a l r e a d y r e j e c t e d

by N In terPan .
∗ /
boo l I s T r a n s a c t i o n I d A c t i v e (u i n t 3 2 t t r a n s a c t i o n I d)
{

i f (GetFromResponseTable (t r a n s a c t i o n I d) == NULL)
{

re turn FALSE ;
}
re turn TRUE;

}

can see a note written by the programmer stating that there
is no need to check if the Transaction Id value is nonzero as
“the value zero is already rejected by N InterPan”. However,
as we reviewed the code, we found out that this sanity check
is only done upon receiving a Scan Request message. There
is no such check for any other message in the protocol. This
means that we can send any other message assuming zero
value for the Transaction and Response Ids and it will be
received and process as a valid message by the light.

6.1.3. Taking over light bulbs. After we discovered this
bug, we looked for ways to exploit it to take over lights
from a large distance. Our first approach was to simply
send a Network join router request with Transaction ID
set to zero. This message will instruct the light to join
our network. However this only caused the light to reset.
After looking at the code, we found that the function
N Security DecryptNetworkKey Impl that is called to
decrypt the new network encryption keys, performs a sanity
check to make sure that the Transaction and Response Ids
are nonzero, and resets the light in such case. As joining
a light to a new network requires sending a network key,
we could not find a way to use the ZLL Touchlink protocol
directly to take over the lights.

However, as is also mentioned in [10] the ZLL standard
mandates compatibility with non-ZLL ZigBee networks.
In the ZLL standard [17] at section 8.1.6 it is written
that: “In order to ensure interoperability with other ZigBee
devices, all ZLL devices should implement the compatible
startup attribute set (SAS) specified in this sub-clause. ZLL
devices can join other non-ZLL ZigBee networks and allow
non-ZLL devices to join ZLL networks under application
control.”. This commissioning protocol described in [32]
does not have any restrictions such as the proximity check
mechanism. Upon joining a network the network key is
sent encrypted with a “Trust centre link key” default key
that is specified in the ZLL standard. While under normal
conditions a Philips Hue light will not try to join a ZigBee
network, it will actively search and try to join such networks
if it is in a “Factory New” state.

Our attack proceeds in the following way: We send a
unicast Reset to Factory New Request command to our
target Philips Hue light. This command only included a
Transaction ID value that we set to zero. Upon receiving
the message the light will undergo a factory reset, and start

scanning for a new network by sending a ZigBee Beacon
Request messages. Then we respond with a ZigBee Beacon
message with the Association Permit flag set to true. This
causes the light to start a ZigBee association process and
join our network.

6.1.4. Simultaneously taking over multiple lightbulbs.
Our next step was to improve our attack, so that it can be
run simultaneity and efficiently against several lights.

The ZLL standard clearly states that the Reset to Factory
New Request command shall be formated such that “the
destination address field shall contain the IEEE address of
the destination and the source PAN ID field shall be set to
the same value used in the preceding scan request inter-PAN
command frame”. However, this is not verified anywhere in
the code. This allows us to send the Reset to Factory New
Request command as a broadcast message, simultaneity
causing all lights within ZigBee range to factory reset. After
that all the lights will respond to our Beacon message and
start the association, and join our network.

But what will happen if one of the lights didn’t receive
our Factory New Request command, or was just outside the
range? If we will try to resend the message it will cause
the lights already associated to our network to reset again.
To solve this problem we use the ZLL support of different
channels available at 2.4 GHz range. The ZLL standard
states that: “A ZLL device shall be able to operate on all
channels available at 2.4GHz, numbered from 11 to 26 ...
Within this range, two sets of channels shall be defined. The
primary ZLL channel set shall consist of channels 11, 15, 20
and 25 and shall be used in preference for commissioning
and normal operations. The secondary ZLL channel set
shall consist of channels 12, 13, 14, 16, 17, 18, 19, 21,
22, 23, 24 and 26, which can be used as a backup to
allow the ZLL device to connect to a non-ZLL network”.
After a factory reset, the Philips Hue light cycles through
all available channels. In each channel it sends a Beacon
Request message, and waits for a short period of time for a
response. It will chose one of the relevant Beacon messages
it received, and switch to that channel for association and
further communication. We repeatedly send the factory reset
messages in the primary ZLL channels, and then switch
to one of the secondary channels for sending the Beacon
message and association process. This allows us to try to
repeatedly reset all the lights in our area, while keeping the
lights we already took over on our network in a secondary
channel so that they will not be affected.

6.2. Implementing and testing our attack

We started by verifying our attack against all the differ-
ent Philips Hue light models we had in our lab, using our
experimental setup. We then implemented an autonomous
attack kit using Texas Instruments’ ZLL stack and the
ZLight2 evaluation board powered by a 1800 mAh USB
powerbank (that is enough for more than 20 hours of work).
The stack we were using did not have a convenient API
for on-the-fly channel switching (this is supported by the

Figure 10. ZigBee wardriving with Zlight2 Evaluation Board

Figure 11. ZigBee warflying scenario

hardware but doing this will require us to rewrite large parts
of the code and replace some closed source libraries of the
stack we used). So in order to simplify our development
process we chose for our experiment to attack only via the
first ZigBee channel 11 and to use two evaluation boards,
one for the factory reset attack on channel 11 and another for
the association and takeover on channel 24. The evaluation
board used for the factory reset attack was programed to
repeatedly send a Reset to Factory New Request command
every 3 seconds at the highest transmission power (about
4.5 dBm) . This gives the lamps ample time to switch to the
other channel and complete the association process with the
second board before the next Reset to Factory New Request
command is sent

6.2.1. Wardriving. - As can be seen in Figure 10, we
installed 3 Philips Hue lights in offices at the first floor of our
faculty building. We successfully tested our full attack from
a car which was parked across the lawn at a distance of about
50 meters, while the factory reset part of the attack worked
from ranges of more then 150 meters. We then successfully
tested our attack while “wardriving” the car at the far edge
of the lawn.

6.2.2. Warflying. - For a warflying demo we found a more
interesting target: an office building in the city of Beer Sheva
in the south of Israel which has a high concentration of
well-known cyber security companies (and is also next to
the building that host the Israeli CERT). As can be seen
in Figure 11, we have installed 5 Philips Hue lights on the
third floor of the building. We then mounted our attack kit
on a DJI Inspire pro drone as can be seen in Figure 12. The
powerbank was attached to the bottom of the drone, while

Figure 12. Attack start position

the evaluation boards were hanging from a 1 meter USB
cable beneath it. This was done to avoid RF interference
from both the drone’s motors and its powerful 2.4 GHz video
and control transmitter.

As can be seen in Figure 12 we started our attack on the
ground at a distance of about 350 meters. Right after takeoff,
at that distance, the factory reset part of the attack started
working. As the drone got closer to the building the takeover
part was completed. To demonstrate the successful take over,
we added code that causes all the lights to repeatedly signal
SOS in Morse code while the drone hovered in front of the
building.

6.3. Ethical disclosure

We made full ethical disclosure of the takeover vulnera-
bilities found to Philips Lighting and to Atmel on July 2016,
providing all the relevant technical details and suggestions
for a fix. We received a confirmation of our findings from
Philips. As this attack affects most of the deployed Hue
lights the fix had to be tested on a large number of versions,
and the first update was released by Philips in October 2016,
which would reduce infection range to only 1m or less using
standard ZLL Touchlink messages. We have also notified
Philips on the recovery of the firmware encryption keys.
Those finding were also confirmed.

7. Worm application

7.1. Bricking attack

We can use the worm for a bricking attack. Unlike
regular DoS attacks this attack is irreversible. Any effect
caused by the worm (blackout, constant flickering, etc.) will
be permanent. As previously mentioned, once the worm is

downloaded, the worm can decide what OTA updates to
allow. The worm is entirely replacing the existing firmware,
so it is up to the worm designer to support the OTA update
protocol if they wish to allow other OTA updates.

There is no other method of reprogramming these de-
vices besides a PCB-level connections. As these lights are
not designed to be disassembled – having a potting com-
pound around the main PCB, along with glue used to secure
the main dome – fixing the issue would require a substantial
recall or warranty replacement.

Any old stock would also need to be recalled, as any
devices with vulnerable firmware can be infected as soon as
power is applied. The consumer is unlikely to have time to
perform the legitimate OTA update before the worm would
infect the bulb, as we previously discussed.

7.2. Wireless network jamming

The IEEE 802.15.4 standard which ZigBee runs over
uses the 2.4 GHz ISM (Industrial, Scientific, Medical)
license-free band. This band is widely used by many stan-
dards, including IEEE 802.11b/g (n mode supports both
2.4 GHz and 5 GHz bands). Due to the low data rate of
IEEE 802.15.4 the channel bandwidth is lower (2 MHz for
802.15.4 vs 20 MHz for 802.11g), meaning that several
802.15.4 channels overlap with each 802.11 channel.

These 802.15.4 SoC devices have a special ‘test mode’
which transmits a continuous wave signal that is used dur-
ing the FCC/CE emission certification process. This test
signal can be tuned to overlap on any of the 2.4 GHz
802.11 channels (or sweep between them). Since the radio
is not performing the clear-channel assessment (CCA) in
this mode it can be used as a very effective jammer. As
this signal may come from many devices at once, such a
jammer could easily be used to disrupt WiFi (or other 2.4
GHz) traffic in an area.

A more dedicated attacker could also use this platform
in attacking specific products using IEEE 802.15.4 on the
2.4 GHz band: examples include WirelessHART, MiWi,
ISA100.11a, 6LoWPAN, Nest Weave, JenNet, and Thread.
It is possible for example to perform more specific DoS
attacks against specific devices or protocols [33].

7.3. Data infiltration and exfiltration

Ronen and Shamir [7] have used the Philips Hue to
exfiltrate data at a rate of about 10KB per day, getting one
bit of data from every message sent from the bridge. Using
infected lights, we can create a similar covert channel, at
much higher rates. This can be done by reading bits from
user chosen data in message and flickering at higher rates
than that allowed by the API. Infected lights can also be
used to infiltrate data into the network, by changing user
readable data such as model version.

7.4. Epileptic seizures

Ronen and Shamir [7] have also shown how the Philips
Hue can be used to trigger epileptic seizures. This attack

can now be executed from a remote location, covering large
areas. In infected lights it is also possible to drive the LEDs
at frequencies that increase long-term discomfort in humans
rather than attempting to overtly trigger seizures [34].

8. Conclusions

In this paper we described an attack which has the
potential to cause large scale effects. Moreover, fixing the
malicious software update will require the physical replace-
ment of every affected lightbulb with a new one, and a
waiting period for a software patch to be available before
restoring light. This scenario might be alarming enough by
itself, but this is only a small example of the large scale
problems that can be caused by the poor security offered in
many IoT devices.

Our attacks exploit a specific implementation bug of the
Touchlink commission protocol and a specific design for
the OTA update process, but they are just an example of the
way security in IoT is designed today. The Atmel code we
reviewed was very well written and documented, but it is
extremely difficult to implement complex state machines of
such protocols without any bugs. The main problem is in
the insecure design of the ZLL standard itself. We believe
this will not be the last bug or attack found against ZLL
commissioning. While the vendor’s main design goal of ease
of use is understandable, a better trade-off between usability
and security must be made, and the security community
and academia should be allowed to take part in the process.
The sharp contrast between the open and inclusive manner
in which TLS 1.3 standard was designed and the secretive
work on the ZigBee 3.0 specification that is still not open
to the public, is a big part of the problem.

We believe that in the same manner of the leaked ZLL
master key, the OTA updates keys will also be leaked. The
reuse of symmetric encryption and signing keys between
lightbulbs is a big security risk and it enables attackers to
create a chain reaction of infections. Security by obscurity
has failed time after time. Working with the security commu-
nity and academia will probably leads to better alternatives
to ZLL commissioning than using a master key, and better
ways to protect OTA updates than a shared symmetric key.
In our computers and smart phones, software updates are
usually protected by asymmetric signatures that validate the
origin of the software, or the connection to the update server.
There are many solutions that can be found for low cost
asymmetric cryptography (for example using hash based
signatures). Moreover in the same manner that the chip
manufacturers added AES hardware accelerators, a strong
requirement in standards like ZigBee will encourage them
to add hardware support for asymmetric cryptography. IoT
devices are becoming more and more common and affect
larger parts of our life. We can learn from history about the
importance of good design practices for security protocols
and how to implement them. We should work together to
use the knowledge we gained to protect IoT devices or we
might face in the near future large scale attacks that will
affect every part of our lives.

Figure 13. Correct values of the correlation analysis attack for byte 1 (in
blue) and byte 2 (in red) compared to all incorrect guesses (in light cyan
and green) show both the positive and negative peak we can exploit.

Appendix
ATMega2564RFR2 Leakage

The ATMega2564RFR2 was assumed to have a leaky
hardware AES engine, as previous work has demonstrated
such leakage on the similar ATMega128RFA1 and the Atmel
XMEGA devices [13], [14]. We characterized the leakage of
the AES-ECB peripheral in the ATMega2564RFR2 device
in order to determine the approximate number of traces
required with our test setup. In this setup the device was
running at 4 MHz3.

This characterization phase was also required as part
of the black-box attack, since we were unsure the exact
encryption mode in use, or where such encryptions occurred
in the bootloader. The ATMega2564RFR2 device has a
unique signature during hardware AES encryptions – we
could correlate the known signature with the unknown traces
to detect this, but in practice it was even visually obvious
(as in Figure 8).

For attacking the AES-ECB mode, a first-order CPA
attack was used with the leakage model from [13], [14].
Figure 13 shows the correlation peaks we measured for 2
of the 16 bytes; they have both a positive and negative
component, so we combined these peaks to improve the
attack efficiency. In addition windowing is required, as a
larger (incorrect) peak occurs a few hundred cycles before
the correct peak, similar to what is reported in [14].

In practice the window can easily be applied, as from
the power signature it is trivial to determine where the
AES hardware operation is occuring. Thus with almost no
experimentation we can take the window offsets determined

3. The device normally runs at 16 MHz. We used a slower speed as the
SPI flash would not reliably work with the long leads of the bus pirate
connected, but clocking the device at 1/4 frequency proved more reliable
with the programmer attached.

Figure 14. PGE of ATMega2564RFR2 Hardware AES Peripheral – a PGE
of 0 indicates that encryption key byte is fully recovered.

from the reference platform (where we control the code and
encryption key), and apply them to a CPA attack on the
‘black-box’ device.

To determine the number of traces we need to capture,
we’ve performed 50K AES-ECB encryptions on our refer-
ence platform (which is the same as Figure 7 but with our
own firmware loaded where we control the key). To measure
the attack success, we are using the partial guessing entropy
(PGE) which indicates how many (incorrect) guesses would
be required for each key byte based on the information
available after processing N traces [35]. A PGE of 0 means
that byte of the encryption key was fully recovered. These
results are shown in Figure 14, where we have plotted the
PGE for N = 20, 40, 60, · · · , 1000.

Note that byte 0 is the most difficult to recover —
its PGE falls to zero after about 2000 traces, while the
other 15 bytes are recovered with only about 800 traces.
As previously proposed if an insufficient number of power
traces exist it is instead possible to perform a CPA attack on
bytes 1 – 15, and use a brute-force check to recover byte 0
[13], [14]. As we had no limit on the number of traces that
could be acquired, we simply acquired around 5000 traces
for each block of interest. This made it very likely we could
recover the true key without having to enumerate any ‘most
likely’ options.

Acknowledgments

The authors would like to thank our colleagues from Ben
Gurion University: Yossi Oren and Omer Shvartz for their
help with our initial power measurements, and Prof. Yuval
Elovici and Sergey Kosyagin for their help with the drone
attack demonstration.

We would also like to thank Dvir Shirman for his helpful
insights about DPA and Ziv Menahem for a lot of hard and
delicate solder work.

References

[1] B. Krebs, “Hacked Cameras, DVRs Powered To-
days Massive Internet Outage,” October 2016. [On-
line]. Available: https://krebsonsecurity.com/2016/10/hacked-
cameras-dvrs-powered-todays-massive-internet-outage/

[2] Wikipedia, “Percolation threshold — Wikipedia, the free
encyclopedia,” 2016, [Online; accessed 30-Oct-2016]. [Online].
Available: https://en.wikipedia.org/wiki/Percolation threshold

[3] M. Petrova, J. Riihijarvi, P. Mahonen, and S. Labella, “Performance
study of ieee 802.15.4 using measurements and simulations,” in IEEE
Wireless Communications and Networking Conference, 2006. WCNC
2006., vol. 1, April 2006, pp. 487–492.

[4] Wikipedia, “Paris — Wikipedia, the free encyclopedia,”
2016, [Online; accessed 30-Oct-2016]. [Online]. Available:
https://en.wikipedia.org/wiki/Paris

[5] A. Chapman. (2014) Hacking into internet connected light
bulbs. [Online]. Available: http://www.contextis.com/resources/blog/
hacking-internet-connected-light-bulbs/

[6] N. Dhanjani. (2013) Hacking lightbulbs: Security eval-
uation of the philips hue personal wireless light-
ing system. [Online]. Available: http://www.dhanjani.com/docs/
HackingLighbulbsHueDhanjani2013.pdf

[7] E. Ronen and A. Shamir, “Extended functionality attacks on iot de-
vices: The case of smart lights,” in 2016 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 2016, pp. 3–12.

[8] D.Heiland. (2016) R7-2016-10: Multiple osram sylvania
osram lightify vulnerabilities. [Online]. Available:
https://community.rapid7.com/community/infosec/blog/2016/07/26/
r7-2016-10-multiple-osram-sylvania-osram-lightify-vulnerabilities-
cve-2016-5051-through-5059

[9] F. Armknecht, Z. Benenson, P. Morgner, and C. Müller, “On the
Security of the ZigBee Light Link Touchlink Commissioning Proce-
dure.” [Online]. Available: https://www1.informatik.uni-erlangen.de/
filepool/publications/zina/ZLLsec-SmartBuildingSec16.pdf

[10] T. Zillner, “Zigbee exploited - the good, the bad and
the ugly,” in Black Hat USA, 2015. [Online]. Avail-
able: https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-
ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf

[11] P. Morgner, S. Mattejat, and Z. Benenson, “All Your Bulbs Are
Belong to Us: Investigating the Current State of Security in Connected
Lighting Systems,” arXiv preprint arXiv:1608.03732, 2016.

[12] C. OFlynn, “A lightbulb worm?” 2016. [Online]. Avail-
able: https://www.blackhat.com/docs/us-16/materials/us-16-OFlynn-
A-Lightbulb-Worm-wp.pdf

[13] I. Kizhvatov, “Side channel analysis of AVR XMEGA crypto engine,”
in Proceedings of the 4th Workshop on Embedded Systems Security.
ACM, 2009, p. 8.

[14] C. O’Flynn and Z. Chen, “Power Analysis Attacks against IEEE
802.15. 4 Nodes,” COSADE, 2016.

[15] J. Jaffe, “A first-order dpa attack against aes in counter mode with un-
known initial counter,” in International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2007, pp. 1–13.

[16] Zigbee light link. [Online]. Available: http://www.zigbee.org/zigbee-
for-developers/applicationstandards/zigbee-light-link/

[17] (2012) Zigbee light link standard version 1.0 - zigbee document 11-
0037-10.

[18] Philips, “Philips, 2015 Annual Report,” http://
www.philips.com/corporate/resources/annualresults/2015/
PhilipsFullAnnualReport2015 English.pdf, 2016.

[19] (2014) Zigbee over-the-air upgrading cluster version 1.1 - zigbee
document 095264r23.

[20] D. Whiting, R. Housley, and N. Ferguson, “Counter with
CBC-MAC (CCM),” RFC 3610, Oct. 2015. [Online]. Available:
https://rfc-editor.org/rfc/rfc3610.txt

[21] R. Housley, “Using Advanced Encryption Standard (AES) CCM
Mode with IPsec Encapsulating Security Payload (ESP),” RFC 4309
(Proposed Standard), Internet Engineering Task Force, Dec. 2005.
[Online]. Available: http://www.ietf.org/rfc/rfc4309.txt

[22] D. McGrew and D. Bailey, “AES-CCM Cipher Suites for
Transport Layer Security (TLS),” RFC 6655 (Proposed Standard),
Internet Engineering Task Force, Jul. 2012. [Online]. Available:
http://www.ietf.org/rfc/rfc6655.txt

[23] “IEEE Standard for Information technology– Local and metropolitan
area networks– Specific requirements– Part 15.4: Wireless Medium
Access Control (MAC) and Physical Layer (PHY) Specifications for
Low Rate Wireless Personal Area Networks (WPANs),” pp. 1–320,
Sept 2006.

[24] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology – CRYPTO 99. Springer-Verlag, 1999, pp.
388–397.

[25] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in Cryptographic Hardware and Embedded Systems
– CHES 04. Springer-Verlag, 2004, pp. 135–152.

[26] J. Wright, “Killerbee: practical zigbee exploitation framework,” in
11th ToorCon conference, San Diego, 2009.

[27] T. Goodspeed, S. Bratus, R. Melgares, R. Speers, and S. W. Smith,
“Api-do: Tools for exploring the wireless attack surface in smart
meters,” in System Science (HICSS), 2012 45th Hawaii International
Conference on. IEEE, 2012, pp. 2133–2140.

[28] C. OFlynn and Z. D. Chen, “Chipwhisperer: An open-source platform
for hardware embedded security research,” in International Workshop
on Constructive Side-Channel Analysis and Secure Design. Springer,
2014, pp. 243–260.

[29] Atmel. Atmel AVR2058: BitCloud OTAU User Guide.

[30] T. Instruments. Crypto-Bootloader (CryptoBSL) for MSP430FR59xx
and MSP430FR69xx MCUs.

[31] N. Hanley, M. Tunstall, and W. P. Marnane, Unknown Plaintext
Template Attacks. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 148–162. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-10838-9 12

[32] (2012) Zigbee specification- zigbee document 053474r20.

[33] C. O’Flynn, “Message denial and alteration on ieee 802.15. 4 low-
power radio networks,” in New Technologies, Mobility and Security
(NTMS), 2011 4th IFIP International Conference on. IEEE, 2011,
pp. 1–5.

[34] A. Wilkins, J. Veitch, and B. Lehman, “Led lighting flicker and
potential health concerns: Ieee standard par1789 update,” in 2010
IEEE Energy Conversion Congress and Exposition, Sept 2010, pp.
171–178.

[35] J. Massey, “Guessing and entropy,” in Proceedings of IEEE Interna-
tional Symposium on Information Theory (ISIT ’94), 1994, p. 204.

